Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Antioxidants (Basel) ; 13(3)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38539796

ABSTRACT

Alzheimer's disease (AD) is the most common form of dementia. Given the link between oxidative stress and AD, many studies focus on the identification of natural antioxidants against AD. Although their antioxidant capacity is important, increasing data suggest that additional activities are related to their beneficial effects, including properties against amyloid beta (Aß) aggregation. Sideritis spp. (mountain tea) extracts possess not only antioxidant activity but also other bioactivities that confer neuroprotection. Although various Sideritis spp. extracts have been extensively studied, there are scarce data on S. clandestina subsp. peloponnesiaca (SCP) phytochemical composition and neuroprotective potential, while nothing is known of the responsible compounds. Given that SCP is a weaker antioxidant compared to other Sideritis spp., here, we investigated its potential beneficial properties against Aß aggregation. We characterized different SCP extracts and revealed their anti-aggregation activity by taking advantage of established C. elegans AD models. Importantly, we identified two pure compounds, namely, sideridiol and verbascoside, being responsible for the beneficial effects. Furthermore, we have revealed a potential anti-Aß aggregation mechanism for sideridiol. Our results support the use of mountain tea in the elderly against dementia and demonstrate the activity of sideridiol against Aß aggregation that could be exploited for drug development.

2.
Plants (Basel) ; 13(5)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38475577

ABSTRACT

This study comprises the phytochemical characterization, the evaluation of the total phenolic content (TPC) and antioxidant activity (AA), and the investigation of the cyto-genotoxic and antigenotoxic potential of hydromethanolic extract derived from Salvia verticillata L. leaves. HPLC-DAD-ESI-MS and HPLC-DAD were used for the characterization of the extract and determination of the major ingredients. Afterwards, the TPC and AA were determined. The cytotoxic and genotoxic effect of the extract on cultured human lymphocytes at concentrations of 10, 25, and 50 µg mL-1 was investigated via the Cytokinesis Block MicroNucleus (CBMN) assay. Moreover, its antigenotoxic potential against the mutagenic agent mitomycin C (MMC) was assessed using the same assay. The hydromethanolic extract comprises numerous metabolites, with rosmarinic acid being the major compound. It had a high value of TPC and exerted significant AA as shown by the results of the Ferric Reducing Antioxidant Power (FRAP) and Radical Scavenging Activity by DPPH• assays. A dose-dependent cytotoxic potential was recorded, with the highest dose (50 µg mL-1) exhibiting statistically significant cytotoxicity. None of the tested concentrations induced significant micronuclei (MN) frequencies, indicating a lack of genotoxicity. All tested concentrations reduced the MMC-mediated genotoxic effects, with the two lowest showing statistically significant antigenotoxic potential.

3.
Biomedicines ; 11(5)2023 May 04.
Article in English | MEDLINE | ID: mdl-37239029

ABSTRACT

Today, Alzheimer's disease (AD)-the most common neurodegenerative disorder, which affects 50 million people-remains incurable. Several studies suggest that one of the main pathological hallmarks of AD is the accumulation of abnormal amyloid beta (Aß) aggregates; therefore, many therapeutic approaches focus on anti-Aß aggregation inhibitors. Taking into consideration that plant-derived secondary metabolites seem to have neuroprotective effects, we attempted to assess the effects of two flavones-eupatorin and scutellarein-on the amyloidogenesis of Aß peptides. Biophysical experimental methods were employed to inspect the aggregation process of Aß after its incubation with each natural product, while we monitored their interactions with the oligomerized Aß through molecular dynamics simulations. More importantly, we validated our in vitro and in silico results in a multicellular organismal model-namely, Caenorhabditis elegans-and we concluded that eupatorin is indeed able to delay the amyloidogenesis of Aß peptides in a concentration-dependent manner. Finally, we propose that further investigation could lead to the exploitation of eupatorin or its analogues as potential drug candidates.

4.
Plants (Basel) ; 12(9)2023 May 04.
Article in English | MEDLINE | ID: mdl-37176939

ABSTRACT

Volatile Organic Compounds (VOCs) over the harvest period have been assessed in twenty-five strawberry genotypes cultivated in western Greece. Using liquid-liquid extraction and gas chromatography-mass spectrometry (GC--MS), twenty-eight volatiles were monitored at early (T1) and mid-harvest (T3) time points to investigate the effect of the genotype and harvest time on strawberry volatilome. A quantitative impact of both harvest date and genotype on VOCs associated with aroma was demonstrated, with the most significant VOCs being terpenes, esters, and acids, followed by lactones and furanones. Harvest date was crucial for terpenoid and phenylpropanoid content, and important for esters, short-chain acids, and lactones. Six out of the twenty-five genotypes (four commercial varieties, including 'Rociera', 'Victory', 'Leyre', and 'Inspire', and two advanced selection genotypes (G2 and G8) were evaluated at two additional time points, covering the entire harvest season. The volatile levels were higher in fruits harvested at early stages (T1-T2) for most of the genotypes examined. The G2 genotype turned out to have a less ample but more stable volatile profile throughout harvesting, while 'Victory', 'Leyre', and 'Inspire' exhibited less abrupt changes than 'Rociera'. This study demonstrates that the determination of VOCs provides significant information regarding the differences in strawberry genotypes related to aroma and enables the selection of genotypes based on specific VOCs content and/or volatile stability over the harvest period. Furthermore, this study pinpoints that growers could opt for optimal harvest dates based on the genotypes and the VOC content.

5.
Molecules ; 27(21)2022 Nov 06.
Article in English | MEDLINE | ID: mdl-36364439

ABSTRACT

Sideritis clandestina (Bory & Chaub.) Hayek subsp. peloponnesiaca (Boiss. & Heldr.) Baden (SCP) is endemic to the mountains of the Northern Peloponnese (Greece). This and other Sideritis taxa, collectively known as mountain tea, are widely ingested as beverages for refreshment or medicinal purposes. We describe a methodology for the characterization of SCP. Four iridoid glycosides (monomelittoside, melittoside, ajugoside, and 7-O-acetyl-8-epiloganic acid), two phenolic acid glycosides (vanillic and salicylic acid glycosides), and three caffeoyl ester glycosides (chlorogenic acid, verbascoside, and isoverbascoside) were isolated from SCP for the first time. We used ultrasound-assisted extraction of 3 g of plant material to produce petroleum ether and aqueous extracts, which we then analyzed using GC/MS and LC/MS. This was applied to eight samples from four different taxa. In total, 70 volatile and 27 polar metabolites were determined. The S. clandestina samples had a lower phenolic content and weaker antioxidant properties than S. raeseri and S. scardica. However, S. clandestina ssp. clandestina seemed to be the most aromatic taxon, with almost double the number of volatiles as the others. Τhis study could contribute to authentication and chemotaxonomic studies of Sideritis taxa.


Subject(s)
Sideritis , Sideritis/chemistry , Glycosides/chemistry , Antioxidants/chemistry , Phytochemicals , Tea , Plant Extracts/chemistry
6.
Plants (Basel) ; 11(17)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36079649

ABSTRACT

Eggplant is a widely consumed vegetable, with significant nutritional value and high antioxidant content, mainly due to its phenolic constituents. Our goal was to determine the levels of carbohydrates, proteins, total phenolics, anthocyanins, flavonoids, chlorogenic acid, and the antioxidant capacity in thirteen eggplant cultivars cultivated in Greece and to identify sequence polymorphisms in key regulating genes of the phenylpropanoid pathway (C4H, HCT, HQT, C3H, F3H, ANS, MYB1), which might relate to the phytochemical content of those cultivars. The carbohydrates' content differs among and within cultivars, while the rest of the phytochemicals differ only among cultivars. The cultivars 'EMI' and 'Lagkada' scored higher than the rest in phenolics, anthocyanins, ascorbic acid, caffeoylquinic acid, and antioxidant capacity. Moreover, significant correlations were observed between various ingredients and the antioxidant capacity (FRAP and DPPH). Sequence analysis revealed several SNPs in C4H, HQT, F3H, ANS, and MYB1 among the cultivars studied. According to chi-square and logistic regression analyses, the missense mutation C4H4-108 correlates significantly with flavonoids, anthocyanins, and proteins; the synonymous mutation HQT-105 correlates with anthocyanins and ascorbic acid; the missense mutation HQT-438 correlates with flavonoids and chlorogenic acid, while the missense mutation ANS1-65 correlates with anthocyanins and sugars. These polymorphisms can be potentially utilized as molecular markers in eggplant breeding, while our data also contribute to the study of eggplant's secondary metabolism and antioxidant properties.

7.
Mar Drugs ; 20(9)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36135741

ABSTRACT

Nannochloropsis oculata is a marine microalgal species with a great potential as food or feed due to its high pigment, protein and eicosapentaenoic acid contents. However, for such an application to be realized on a large scale, a biorefinery approach is necessary due to the high cost of microalgal biomass production. For example, techno economic analyses have suggested the co-production of food or feed with antioxidants, which can be extracted and supplied separately to the market. The aim of this study was to investigate the effect of cultivation conditions on the antioxidant capacity of Nannochlosopsis oculata extracts, derived with ultrasound-assisted extraction at room temperature, as well as the proximate composition and fatty acid profile of the biomass. A fractional factorial approach was applied to examine the effects of temperature (20-35 °C), pH (6.5-9.5) and light period (24:0, 12:12). At the end of each run, biomass was collected, washed with 0.5M ammonium bicarbonate and freeze-dried. Antioxidant capacity as gallic acid equivalents as well as pigment content were measured in the ethanolic extracts. Optimal conditions were different for productivity and biomass composition. Interesting results regarding the effect of light period (LP) and pH require further investigation, whereas the effect of moisture on the extraction process was confounded with biomass composition. Finally, further data is provided regarding the relation between chlorophyll content and apparent phenolic content using the Folin-Ciocalteu assay, in agreement with our previous work.


Subject(s)
Microalgae , Stramenopiles , Antioxidants/metabolism , Biomass , Chlorophyll/metabolism , Eicosapentaenoic Acid/metabolism , Fatty Acids/metabolism , Gallic Acid/metabolism , Hydrogen-Ion Concentration , Microalgae/metabolism , Photobioreactors , Stramenopiles/metabolism , Temperature
8.
Antioxidants (Basel) ; 11(7)2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35883811

ABSTRACT

There has been growing interest in microalgal biomolecules for health and cosmetics, as well as in the use of microalgae as aquaculture feed due to the need to replace fishmeal and fish oil with sustainable yet equally nutritious alternatives. Aim of this study is to evaluate the potential of five marine microalgal species, namely Chlorella minutissima, Dunaliella salina, Isochrysis galbana, Nannochloropsis oculata and Tisochrysis lutea, for the co-production of antioxidants and aquaculture feed. Batch cultivation was performed under saturating light intensity and continuous aeration. Freeze-dried biomass was extracted sequentially with water and methanol and evaluated for phenolic content and antioxidant activity, as well as proximate composition and fatty acid profile. Methanolic extracts of C. minutissima presented the highest phenolic content, measured with the Folin-Ciocalteu assay, and antioxidant activity. However, HPLC and LC-MS showed the presence of non-pigment compounds only in T. lutea. Total phenolic content and antioxidant activity were correlated to chlorophyll content. N. oculata and T. lutea were rich in eicosapentaenoic acid and docosahexaenoic acid, respectively, as well as in protein. In conclusion, N. oculata and T. lutea are suitable candidates for further optimization, while the data presented suggest that pigment effects on the Folin-Ciocalteu method require reconsideration.

9.
Antioxidants (Basel) ; 11(6)2022 May 31.
Article in English | MEDLINE | ID: mdl-35740000

ABSTRACT

The aim of this study was the development of an efficient "green" extraction method of Nannochloropsis oculata to produce antioxidant extracts and nutritious residual biomass. Twenty-one extraction methods were evaluated by measuring the reactivity with the Folin-Ciocalteu reagent: ultrasonication or maceration at different temperatures with different organic solvents, extraction at different pH values, enzyme-assisted extraction, encapsulation with ß-cyclodextrin, and the use of natural deep eutectic solvents. Ultrasound-assisted extraction with ethanol or betaine: 1,2-propanediol in a molar ratio of 2:5 (BP) had optimal extractive capacity. Both extracts were evaluated with antioxidant assays and the ethanol extract exhibited significantly higher (at least twofold) values. The determination of carotenoids by LC-MS and HPLC-DAD revealed the dominance of violaxanthin and antheraxanthin and their fourfold higher concentrations in the ethanol extract. The 1H-NMR characterization of the ethanol extract confirmed the results of the colorimetric and chromatographic assays. The microalgal biomass was characterized before and after the extraction in terms of humidity, ash, carbohydrates, proteins, chlorophyll-a, carotenoids, and lipids; the identity and content of the latter were determined with gas chromatography. BP caused a smaller depletion of the lipids from the biomass compared to ethanol, but proteins, carbohydrates, and ash were at a higher content in the biomass obtained after ethanol extraction, whereas the biomass was dry and easy to handle. Although further optimization may take place for the scale-up of those procedures, our study paves the way for a green strategy for the valorization of microalgae in cosmetics without generating waste, since the remaining biomass can be used for aquafeed.

10.
Molecules ; 28(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36615289

ABSTRACT

Salvia fruticosa and S. pomifera subsp. calycina are native to Eastern Mediterranean and S. pomifera subsp. pomifera is endemic to Greece. The primary aim of this study was to develop an analytical methodology for metabolomic profiling and to study their efficacy in combating glycation, the major biochemical complication of diabetes. After sequential ultrasound-assisted extraction of 2 g of leaves with petroleum ether and 70% methanol, the volatile metabolites in the petroleum ether extracts were studied with GC-MS (Gas Chromatography-Mass Spectrometry), whereas the polar metabolites in the hydroalcoholic extracts were determined and quantified by UHPLC-DAD-ESI-MS (Ultra-High Performance Liquid Chromatography-Diode Array Detector-Mass Spectrometry). This methodology was applied to five populations belonging to the three native taxa. 1,8-Cineole was the predominant volatile (34.8-39.0%) in S. fruticosa, while S. pomifera had a greater content of α-thujone (19.7-41.0%) and ß-thujone (6.0-39.1%). Principal Component Analysis (PCA) analysis of the volatiles could discriminate the different taxa. UHPLC-DAD-ESI-MS demonstrated the presence of 50 compounds, twenty of which were quantified. PCA revealed that not only the taxa but also the populations of S. pomifera subsp. pomifera could be differentiated. All Salvia samples inhibited advanced glycation end-product formation in a bovine serum albumin/2-deoxyribose assay; rosmarinic and carnosic acid shared this activity. This study demonstrates the antiglycation activity of S. fruticosa and S. pomifera extracts for the first time and presents a miniaturized methodology for their metabolomic profiling, which could aid chemotaxonomic studies and serve as a tool for their authentication and quality control.


Subject(s)
Salvia , Gas Chromatography-Mass Spectrometry , Salvia/chemistry , Mass Spectrometry , Phytochemicals/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry
11.
Int J Mol Sci ; 22(24)2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34948297

ABSTRACT

Six strawberry genotypes were examined for fruit yield and size, important chemical traits (sugars, phenolics, anthocyanins, ascorbic acid, volatiles) and antioxidant properties (ferric reducing power). In addition, we determined the expression of genes and transcription factors (SAAT, FaNES1, FaFAD1, FaEGS2, FaEOBII and FaMYB10) controlling the main flavor and aroma traits, and finally evaluated the effect of the genotype and harvest time on the examined chemical and genetic factors, as well as their intercorrelations. The commercial varieties 'Fortuna', 'Victory', 'Calderon', 'Rociera', and two advanced selections Ber22/6 and Ber23/3 were cultivated under the same conditions at Berryplasma World Ltd. plantations (Varda, Ilia, Region of Western Greece). Strawberries were harvested at three different time points over the main harvest period in Greece, i.e., early March (T1), late March (T2) and late April (T3). 'Fortuna' exhibited the highest early and total yield, while 'Calderon', the highest average berry weight. General Linear Model repeated measures ANOVA demonstrated that the interaction of the genotype and harvest time was significant (p < 0.001) on all tested quality attributes and gene expression levels, showing that each genotype behaves differently throughout the harvest period. Exceptions were observed for: (a) the volatile anhydrides, fatty acids, aromatics and phenylpropanoids (all were greatly affected by the harvest time), and (b) lactones, furaneol and FaEGS2 that were affected only by the genotype. We observed significant intercorrelations among those factors, e.g., the positive correlation of FaFAD1 expression with decalactone and nerolidol, of SAAT with furaneol, trans-cinnamic acid and phenylpropanoids, and of FaEGS2 with decalactone and FaFAD1. Moreover, a strong positive correlation between SAAT and FaMYB10 and a moderate negative one between SAAT and glucose were also detected. Those correlations can be further investigated to reveal potential markers for strawberry breeding. Overall, our study contributes to a better understanding of strawberry physiology, which would facilitate breeding efforts for the development of new strawberry varieties with superior qualitative traits.


Subject(s)
Flavoring Agents/metabolism , Fragaria/genetics , Quantitative Trait Loci/genetics , Volatile Organic Compounds/metabolism , Antioxidants/metabolism , Fragaria/metabolism , Fruit/genetics , Fruit/metabolism , Genotype , Glucose/genetics , Glucose/metabolism , Greece , Odorants , Sesquiterpenes/metabolism , Taste/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
12.
Foods ; 10(12)2021 Dec 18.
Article in English | MEDLINE | ID: mdl-34945695

ABSTRACT

Rosmarinus officinalis L. (rosemary) is in high demand in the food and drink industries due to its distinct organoleptic properties. With the aim of evaluating the rosemary leaves as drink ingredients, both the essential oil and alcoholic (38%, v/v) extract were studied in terms of chemical composition, genotoxicity, antimicrobial, antiviral, and antioxidant properties. GC-MS analysis showed that the main volatile compounds in the essential oil were eucalyptol (40.1%), camphor (12.4%), and α-pinene (12.9%). LC-MS analysis revealed gallocatechin and rosmarinic acid as the main extract ingredients. Both the essential oil and the extract were not genotoxic (Ames test) against TA98 and TA100 at the dilutions of 5% and 90%, respectively; those dilutions were selected as the maximum possible ones in the drink industry. Their activity was investigated against Escherichia coli, Salmonella enterica serovar Typhimurium, Staphylococcus aureus, Aspergillus niger, and Adenovirus 35. Both were effective against Adenovirus and A. niger, even the essential oil at 5% (v/v). The extract at dilutions of 25-90% had more pronounced activity against tested bacteria than the essential oil at the dilutions of 5-100%; the essential oil at the dilution of 5% inhibited S. aureus growth. The antioxidant activity was evaluated by the 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay, the 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid decolorization assay, and the ferric reducing antioxidant power assay. Both exhibited good antioxidant activity, but rosemary essential oil was far more effective than the extract. Our results demonstrate that rosemary essential oil and extract are safe and have beneficial biological properties. Therefore, they could serve as health-promoting ingredients in the drink industry.

13.
Phytochemistry ; 191: 112900, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34399302

ABSTRACT

Salvia pomifera subsp. calycina (Sm.) Hayek (Lamiaceae), is an Eastern Mediterranean element, which is used in traditional medicine and cuisine in the same manner as S. fruticosa Mill. and S. officinalis L.. The essential oil (EO) and the extracts of S. pomifera possess bioactive compounds with anti-proliferative, anticholinesterase, antioxidant, antiviral and antifungal properties. In this study, the chemical (EO), genetic (DNA microsatellites, SSRs) and morphological diversity of forty-nine individuals of Salvia pomifera subsp. calycina, originating from five natural populations of the Peloponnese (Greece) were determined, in order to explore the potential for successful breeding and to reveal tools and biomarkers for identification and authentication. Chemical and genetic analyses revealed high levels of variation both within and among populations, while morphological analysis mainly within populations. Essential oil yield ranged from 1.79 to 5.79 ml 100 g-1 dry wt, among individuals while ß-thujone ranged from 6.04 to 64.75%. Consistency was found in the EO yield and composition of specific individuals, when sampled during the same period, for three consecutive years, while the analysis during spring and summer months showed differentiation that still retained individual's discrimination. Genetic analysis using SSRs showed that the observed population heterozygosity (Ho) ranged from 0.48 to 0.67, while high number of private alleles were revealed in all populations. Considerable genetic differentiation was observed among the three Salvia taxa (S. pomifera subsp. calycina, S. fruticosa, S. officinalis) (Fst values ranged from 0.27 to 0.48) and lower among S. pomifera subsp. calycina populations (Fst values ranged from 0.06 to 0.13). The great variation that was revealed in all measured traits, in combination with the demonstrated, genetically based, consistency of their EO yield and composition, advocates to a successful breeding, whereas SSR genotyping presents a strong identification and authentication tool.


Subject(s)
Oils, Volatile , Salvia officinalis , Salvia , Antifungal Agents , Antioxidants , Plant Breeding
14.
Pathogens ; 10(4)2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33921899

ABSTRACT

Essential oils (EOs) and extracts of rose geranium (Pelargonium graveolens) and petals of rose (Rosa damascena) have been fully characterized in terms of composition, safety, antimicrobial, and antiviral properties. They were analyzed against Escherichia coli, Salmonella enterica serovar Typhimurium, Staphylococcus aureus, Aspergillus niger, and Adenovirus 35. Their toxicity and life span were also determined. EO of P. graveolens (5%) did not retain any antibacterial activity (whereas at 100% it was greatly effective against E. coli), had antifungal activity against A. niger, and significant antiviral activity. Rose geranium extract (dilutions 25-90%) (v/v) had antifungal and antibacterial activity, especially against E. coli, and dose-dependent antiviral activity. Rose petals EO (5%) retains low inhibitory activity against S. aureus and S. Typhimurium growth (about 20-30%), antifungal activity, and antiviral activity for medium to low virus concentrations. Rose petals extract had significant antibacterial activity at dilutions of 25-90%, especially against E. coli and S. Typhimurium, antifungal, and the most potent antiviral activity. None of the EOs and extracts were toxic in dilutions of up to 5% and 90%, respectively. Finally, all materials had a life span of more than eight weeks. These results support the aspect that rose petals and rose geranium EOs, and extracts, have beneficial antimicrobial and antiviral properties and they can be used as natural preservatives.

15.
Antioxidants (Basel) ; 9(10)2020 Oct 09.
Article in English | MEDLINE | ID: mdl-33050229

ABSTRACT

In order to assess the diversity of Greek garlic (Allium sativum L.) landraces, 34 genotypes including commercial ones were grown in the same field and their content in organosulfur compounds, pyruvate, total sugars, and total phenolics, alongside antioxidant capacity, was determined. The organosulfur compounds were studied by Gas Chromatography-Mass Spectrometry (GC-MS) after ultrasound-assisted extraction in ethyl acetate, identifying 2-vinyl-4H-1,3-dithiin and 3-vinyl-4H-1,2-dithiin as the predominant compounds, albeit in different ratios among genotypes. The bioactivity and the polar metabolites were determined in hydromethanolic extracts. A great variability was revealed, and nearly one-third of landraces had higher concentration of compounds determining bioactivity and organoleptic traits than the imported ones. We recorded strong correlations between pyruvate and total organosulfur compounds, and between antioxidant capacity and phenolics. In conclusion, chemical characterization revealed great genotype-dependent variation in the antioxidant properties and the chemical characters, identifying specific landraces with superior traits and nutritional and pharmaceutical value.

16.
Pharmaceutics ; 12(4)2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32295134

ABSTRACT

Polymeric nanoparticles (NPs) encapsulating Pistacia lentiscus L. var. chia essential oil (EO) were prepared by a solvent evaporation method, in order to obtain a novel carrier for administration on the skin. The specific EO exhibits antimicrobial and anti-inflammatory properties thus stimulating considerable interest as a novel agent for the treatment of minor skin inflammations. The incorporation into nanoparticles could overcome the administration limitations that inserts the nature of the EO. Nanoparticles were prepared, utilizing poly(lactic acid) (PLA) as shell material, due to its biocompatibility and biodegradability, while the influence of surfactant type on NPs properties was examined. Two surfactants were selected, namely poly(vinyl alcohol) (PVA) and lecithin (LEC) and NPs' physicochemical characteristics i.e. size, polydispersity index (PdI) and ζ-potential were determined, not indicating significant differences (p > 0.05) between PLA/PVA-NPs (239.9 nm, 0.081, -29.1 mV) and PLA/LEC-NPs (286.1 nm, 0.167, -34.5 mV). However, encapsulation efficiency (%EE) measured by GC-MS, was clearly higher for PLA/PVA-NPs than PLA/LEC-NPs (37.45% vs. 9.15%, respectively). Moreover PLA/PVA-NPs remained stable over a period of 60 days. The in vitro release study indicated gradual release of the EO from PLA/PVA-NPs and more immediate from PLA/LEC-NPs. The above findings, in addition to the SEM images of the particles propose a potential structure of nanocapsules for PLA/PVA-NPs, where shell material is mainly consisted of PLA, enclosing the EO in the core. However, this does not seem to be the case for PLA/LEC-NPs, as the results indicated low EO content, rapid release and a considerable percentage of humidity detected by SEM. Furthermore, the Minimum Inhibitory Concentration (MIC) of the EO was determined against Escherichia coli and Bacillus subtilis, while NPs, however did not exhibit considerable activity in the concentration range applied. In conclusion, the surfactant selection may modify the release of EO incorporated in NPs for topical application allowing its action without interfering to the physiological skin microbiota.

17.
Phytochemistry ; 174: 112290, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32087928

ABSTRACT

Hypericum perforatum has plenty of uses in traditional medicine and is the source of top-selling herbal drugs and food supplements. The secondary metabolite chemistry for most of the nearly 500 Hypericum taxa is still unknown, even though they are used interchangeably. In the present study, we characterized four Hypericum populations from Achaia, Greece, belonging to H. perforatum ssp. veronense, H. perfoliatum, H. triquetrifolium, and an uninvestigated taxon, H. empetrifolium ssp. empetrifolium, in terms of their essential oils and polar bioactives in methanolic extracts via GC-MS, LC-HRMS, LC-DAD-MS, and HPLC-DAD. We also performed sequence analysis of nrITS to explore the genetic profile of these taxa and to examine whether their genotype is correlated to the metabolome. Sixty-three non-volatile compounds, phloroglucinols in their majority, and over one hundred (113) volatiles, mostly sesqui- and mono- terpenes, were detected. The concentration of the major polar constituents varied greatly among samples. In particular, phloroglucinols' diversity and abundance in H. empetrifolium ssp. empetrifolium was remarkable. The PCA and Biplot analysis revealed the contribution of each compound to the total chemodiversity and also revealed certain compounds that contribute to the discrimination of the samples. Sequence analysis of nrITS revealed different genetic profiles and markers which can be used for the identification of the four Hypericum taxa. The Mantel test showed a relatively strong correlation between the genetic profile and the volatile compounds and low with the main polar metabolites.


Subject(s)
Hypericum , Greece , Mass Spectrometry , Metabolomics , Phloroglucinol , Plant Extracts
18.
Epilepsy Behav ; 102: 106632, 2020 01.
Article in English | MEDLINE | ID: mdl-31747631

ABSTRACT

The aim of the present study was to investigate the effect of rutin administration (100 mg/kg/day) to pentylenetetrazol (PTZ)-treated Balb-c mice (60 mg/kg/day), with respect to anxiety-like behavior using both open-field and elevated plus-maze (EPM) tests, and acetylcholinesterase (AChE) activity in salt-soluble (SS) fraction and detergent-soluble (DS) fraction of the cerebral cortex, hippocampus, striatum, midbrain, and diencephalon. Our results demonstrated that the administration of PTZ in 3 doses and the induction of seizures increased significantly anxiety behavior of mice and reduced significantly DS-AChE activity in all brain regions examined, while the reduction in the SS fraction was brain region-specific. Rutin administration to normal mice did not affect their behavior, while it induced a brain region-specific reduction in SS-AChE and a significant decrease in DS-AChE in all brain regions. We demonstrated for the first time that pretreatment of PTZ-mice with rutin (PTZ + Rutin group) prevented the manifestation of anxiety and induced interestingly a further significant reduction on the SS- and DS-AChE activities only in the cerebral cortex and striatum, in comparison with PTZ group. Our results show that rutin exhibits an important anxiolytic effect and an anticholinesterase activity in specific brain areas in the seizure model of PTZ.


Subject(s)
Acetylcholinesterase/metabolism , Anxiety/drug therapy , Anxiety/enzymology , Brain/enzymology , Pentylenetetrazole/toxicity , Rutin/therapeutic use , Seizures/drug therapy , Seizures/enzymology , Animals , Brain/drug effects , Isoenzymes/metabolism , Male , Maze Learning/drug effects , Maze Learning/physiology , Mice , Mice, Inbred BALB C , Rutin/pharmacology , Seizures/chemically induced , Treatment Outcome
19.
Eur Thyroid J ; 8(4): 215-220, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31602365

ABSTRACT

BACKGROUND: Amiodarone-induced thyrotoxicosis (AIT) is a common and deleterious side effect of amiodarone use. There are two types of AIT, characterized by distinct pathogenic mechanisms and, hence, different treatments. Discriminating between type 1 (AIT1) and type 2 (AIT2) AIT is often very challenging. Beta-glucuronidase (ß-G) is a lysosomal enzyme released into the extracellular fluid during inflammation. OBJECTIVES: To examine whether the determination of the plasma activity of ß-G is useful in distinguishing AIT1 from AIT2. METHODS: The study included 67 subjects: 9 with AIT1, 9 with AIT2, 14 with hyperthyroidism due to Grave's disease or toxic multinodular goiter, 14 with subacute thyroiditis, and 21 euthyroid controls. Thyroid function tests and plasma ß-G activity were determined in all participants, while thyrotoxic patients also underwent thyroid ultrasound/scintigraphy and urine iodine excretion assessment. RESULTS: Plasma ß-G activity (expressed as mean ± SD in nmol 4-methylumbelliferone [4-MU]/mL plasma/h) in AIT2 was higher compared to AIT1 (2,263.6 ± 771 vs. 1,101.8 ± 201.9, p < 0.05) and similar to subacute thyroiditis (2,263.6 ± 771 vs. 2,083.2 ± 987.5, p = ns). ß-G activity did not differ significantly between AIT1 and controls (1,101.8 ± 201.9 vs. 954.6 ± 248.6, p = ns). ROC curve analysis revealed that ß-G activity had a high predictive value for destructive processes, namely AIT2 and subacute thyroiditis (AUC 0.846, 95% CI 0.748-0.943) and a cut-off value of 1,480.5 nmol 4-MU/mL plasma/h was able to discriminate between destructive and non-destructive thyroid conditions with 74% sensitivity and 82% specificity. CONCLUSION: In our study, plasma ß-G activity performed well in distinguishing AIT1 from AIT2. Further studies are warranted to establish its usefulness as a discriminator between the two AIT types.

20.
Fitoterapia ; 130: 225-233, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30213756

ABSTRACT

The aim of this study was to contribute to the characterization of Crocus taxa using morphological, phytochemical and genetic analysis. The styles of C. cartwrightianus, C. oreocreticus and C. laevigatus, collected in the island of Crete were compared to those of C. sativus cultivated at the region of Western Macedonia (Greece). Phytochemical analysis was done using GC-MS and HPLC methods, while ISSR markers were used for their genetic characterization. Safranal was the major volatile component of the styles of C. sativus, 4-hydroxy-2,6,6-trimethyl-1-cyclohexene-1-carboxaldehyde of C. cartwrightianus and C. oreocreticus, and isophorone of C. laevigatus. C. sativus had the highest content of crocins and picrocrocin, while C. laevigatus the lowest (only 5% of C. sativus' quantity) and negligible amount of picrocrocin. According to both the genetic and the chemical analysis, C. cartwrightianus is more related to C. oreocreticus, while C. sativus and C. laevigatus are more distinct. Concordance between the two different types of data was also confirmed by the Mantel test (r = 0.932, P = .68). This is the first thorough screening of secondary metabolites (volatile and non-volatile) and also genetic and morphological characters of wild Crocus styles simultaneously, that contributes to the identification and valorisation of genotypes with similar to C. sativus traits which may be introduced as new cultivars through breeding.


Subject(s)
Crocus/chemistry , Crocus/classification , Phytochemicals/analysis , Carotenoids/analysis , Chromatography, High Pressure Liquid , Cyclohexenes/analysis , Flowers/chemistry , Gas Chromatography-Mass Spectrometry , Genetic Markers , Glucosides/analysis , Greece , Terpenes/analysis , Volatile Organic Compounds/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...